Modified Bayesian Kriging for noisy response problems and Bayesian confidence-based reliability-based design optimization

نویسندگان

  • Nicholas John Gaul
  • Kyung K. Choi
  • Jia Lu
  • Albert Einstein
چکیده

The objective of this study is to develop a new modified Bayesian Kriging (MBKG) surrogate modeling method that can be used to carry out confidence-based reliability-based design optimization (RBDO) for problems in which simulation analyses are inherently noisy and standard Kriging approaches fail. The formulation of the MBKG surrogate modeling method is presented, and the full conditional distributions of the unknown MBKG parameters are derived and coded into a Gibbs sampling algorithm. Using the coded Gibbs sampling algorithm, Markov chain Monte Carlo is used to fit the MBKG surrogate model. A sequential sampling method that uses the posterior credible sets for inserting new design of experiment (DoE) sample points is proposed. The sequential sampling method is developed in such a way that the new DoE sample points added will provide the maximum amount of information possible to the MBKG surrogate model, making it an efficient and effective way to reduce the number of DoE sample points needed. Therefore, it improves the posterior distribution of the probability of failure efficiently. Finally, a confidence-based RBDO method using the posterior distribution of the probability of failure is developed. The confidence-based RBDO method is developed so that the uncertainty of the MBKG surrogate model is included in the optimization process. A 2-D mathematical example was used to demonstrate fitting the MBKG surrogate model and the developed sequential sampling method that uses the posterior credible sets for inserting new DoE. A detailed study on how the posterior distribution of the probability of failure changes as new DoE are added using the developed sequential sampling method is presented. Confidence-based RBDO is carried out using the same 2D mathematical example. Three different noise levels are used for the example to compare how the MBKG surrogate modeling method, the sequential sampling method,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Bayesian Kriging for Noisy Response Problems for Reliability Analysis

This paper develops a new modified Bayesian Kriging (MBKG) surrogate modeling method for problems in which simulation analyses are inherently noisy and thus standard Kriging approaches fail to properly represent the responses. The purpose is to develop a method that can be used to carry out reliability analysis to predict probability of failure. The formulation of the MBKG surrogate modeling me...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

An Evolutionary Based Bayesian Design Optimization Approach Under Incomplete Information

Design optimization in the absence of complete information about uncertain quantities has been recently gaining consideration, as expensive repetitive computation tasks are becoming tractable due to invent of faster and parallel computers. This work uses Bayesian inference to quantify design reliability when only sample measurements of the uncertain quantities are available. A generalized Bayes...

متن کامل

Simulation Optimization : New Approaches and an Application

Title of dissertation: SIMULATION OPTIMIZATION: NEW APPROACHES AND AN APPLICATION Huashuai Qu, Doctor of Philosophy, 2014 Dissertation directed by: Professor Michael C. Fu Department of Decision, Operations, and Information Technologies Simulation models are commonly used to provide analysis and prediction of the behavior of complex stochastic systems. Simulation optimization integrates optimiz...

متن کامل

Reliability-based Design Optimization Using A Maximum Confidence Enhancement based Sequential Sampling Approach

1. Abstract This paper presents a maximum confidence enhancement based sequential sampling approach for simulation-based design under uncertainty. In the proposed approach, the ordinary Kriging method is adopted to construct surrogate models for all constraints and thus Monte Carlo simulation (MCS) is able to be used to estimate reliability and its sensitivity with respect to design variables. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016